

Typical Applications

The HMC307QS16G / HMC307QS16GE is ideal for:

- Cellular
- PCS, ISM, MMDS
- Wireless Local Loop

Functional Diagram

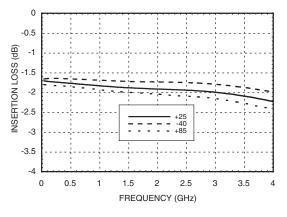
1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz

Features

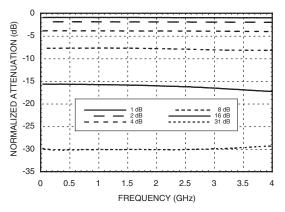
1 dB LSB Steps to 31 dB Single Control Line Per Bit +/- 0.5 dB Typical Bit Error Miniature QSOP-16 Package: 29.4 mm²

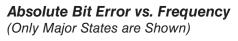
General Description

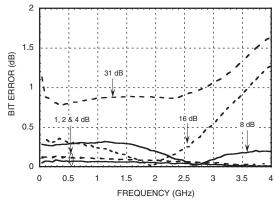
The HMC307QS16G & HMC307QS16GE are broadband 5-bit GaAs IC digital attenuators in 16 lead QSOP grounded base surface mount plastic packages. Covering DC to 4 GHz, the insertion loss is less then 2 dB typical. The attenuator bit values are 1 (LSB), 2, 4, 8, and 16 dB for a total attenuation of 31 dB. Attenuation accuracy is excellent at \pm 0.5 dB typical with an IIP3 of up to +44 dBm. Five bit control voltage inputs, toggled between 0 and -5V, are used to select each attenuation state at less than 50 uA each. A single Vee bias of -5V allows operation down to DC. This product is an excellent alternative to the HMC235QS16G.


Electrical Specifications, $T_A = +25^{\circ} C$, Vee = -5V & VCTL= 0/Vee

Parameter	Frequency	Min.	Typical	Max.	Units
Insertion Loss	DC - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 4.0 GHz		1.8 1.9 2.0 2.1	2.2 2.4 2.5 2.7	dB dB dB dB
Attenuation Range	DC - 4.0 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)	DC - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 4.0 GHz	11 11 10 8	15 17 18 15		dB dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) 1 - 20 dB States 21 - 31 dB States 1 - 15 dB States 16 - 31 dB States	DC - 2.7 GHz DC - 2.7 GHz 2.7 - 4.0 GHz 2.7 - 4.0 GHz	\pm 0.2 + 3% of Atten. Setting Max \pm 0.3 + 5% of Atten. Setting Max \pm 0.3 + 5% of Atten. Setting Max \pm 0.6 + 10% of Atten. Setting Max		ting Max ting Max	dB dB dB dB
Input Power for 0.1 dB Compression	0.5 - 4.0 GHz		24		dBm
Input Third Order Intercept Point (Two-tone Input Power = 0 dBm Each Tone)	0.5 - 4.0 GHz		44		dBm
Switching Characteristics					
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 4.0 GHz		140 160		ns ns

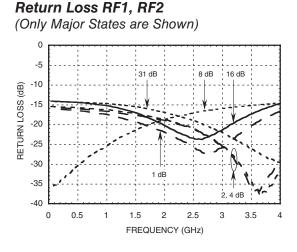

ROHS V

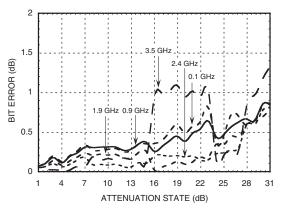

Insertion Loss



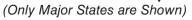
Normalized Attenuation

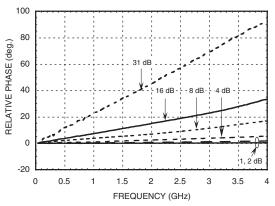
(Only Major States are Shown)





HMC307QS16G / 307QS16GE


1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz



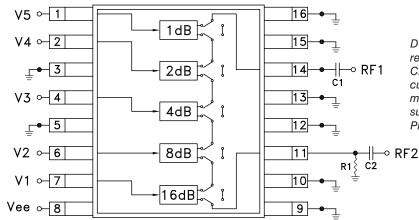
Absolute Bit Error vs. Attenuation State

Relative Phase vs. Frequency

1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz

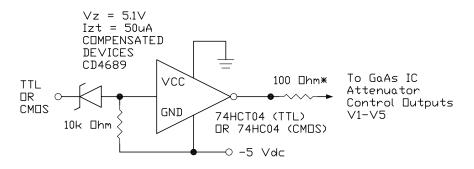
Control Voltage

State	Bias Condition
Low	0 to -3V @ 70 uA Typ.
High	Vee + 0.8V @ 5 uA Typ.
Note: Vee = $-5V \pm 10\%$	


Bias Voltage & Current

Vee Range = -5.0 Vdc ± 10%		
Vee (VDC)	lee (Typ.) (mA)	lee (Max.) (mA)
-5.0	3	6

Truth Table


Control Voltage Input			Attenuation		
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	State RF1 - RF2
Low	Low	Low	Low	Low	Reference I.L.
Low	Low	Low	Low	High	1 dB
Low	Low	Low	High	Low	2 dB
Low	Low	High	Low	Low	4 dB
Low	High	Low	Low	Low	8 dB
High	Low	Low	Low	Low	16 dB
High	High	High	High	High	31 dB Max. Atten.
Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.					

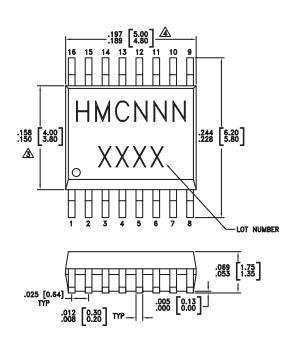
Application Circuit

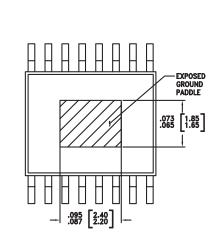
DC Blocking Capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \text{ pF} \sim 0.1 \text{ uF}$ to allow lowest customer specific frequency to pass with minimal loss. R1= 5K Ohm is required to supply voltage to the circuit through either Pin 11 or Pin 14.

Suggested Driver Circuit (One Circuit Required Per Bit Control Input)

Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current. * Recommended value to suppress unwanted RF signals at V1 - V5 control lines.

1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz


Absolute Maximum Ratings


Control Voltage (V1 - V5)	Vee - 0.5 Vdc
Bias Voltage (Vee)	-7.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	40 to +95 %
Operating Temperature	-40 to +85 °C
	0.00 dBm
RF Input Power (0.5 - 4 GHz)	+26 dBm

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

.050 [1.27 .016 [0.41]

-.010 0.25

2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

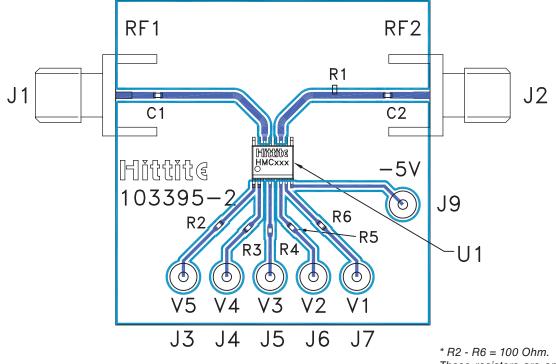
5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC307QS16G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	HMC307 XXXX
HMC307QS16GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	HMC307 XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C


[3] 4-Digit lot number XXXX

ROHS V EARTH FRIENDL

1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz

Evaluation Circuit Board

* R2 - R6 = 100 Ohm. These resistors are optional and may be used to enhance decoupling of the RF path from the control inputs.

List of Materials for Evaluation PCB 103397 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J9	DC Pin
R1	5k Ohm Resistor, 0402 Pkg.
R2 - R6	100 Ohm Resistor, 0402 Pkg.
C1, C2	0402 Chip Capacitor, Select Value for Lowest Frequency of Operation
U1	HMC307QS16G / HMC307QS16GE Digital Attenuator
PCB [2]	103395 Evaluation PCB 1.5" x 1.5"

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

ROWAVE CORPORATION V07.0505

HMC307QS16G / 307QS16GE

1dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, DC - 4 GHz

Notes: